
EUROGEN 2019 September 12-14, 2019, Guimarães, Portugal

Robustness Measures for Multi-Objective Robust Design
Lisa Kusch*, Nicolas R. Gauger

Chair for Scientific Computing
Technische Universität Kaiserslautern, 67663 Kaiserslautern, Germany

Email:[lisa.kusch, nicolas.gauger]@scicomp.uni-kl.de

Summary

A significant step to engineering design is to take into account uncertainties and to develop optimal designs that are
robust with respect to perturbations. Furthermore, when multiple optimization objectives are involved it is important to
define suitable descriptions for robustness. We introduce robustness measures for robust design with multiple objectives
that are suitable for considering the effect of uncertainties in objective space. A direct formulation and a two-phase
formulation based on expected losses in objective space are presented for finding robust optimal solutions. We apply
the two-phase formulation to the robust design of an airfoil. Fluid mechanical quantities are optimized under the
consideration of aleatory uncertainties. The uncertainties are propagated with the help of the non-intrusive polynomial
chaos approach. The resulting multi-objective optimization problem is solved with a constraint-based approach, that
combines adjoint-based optimization methods and evolutionary methods evaluated on surrogate models.
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1 Introduction

Multi-objective optimization and robust design are two
well-established fields of research. Especially, in
engineering applications it is important to optimize for
different conflicting criteria for example cost and quality
aspects. Here, the aim is to find a set of solutions that
fulfill the concept of Pareto optimality. A feasible design
x is Pareto optimal if it is non-dominated, i.e. there does
not exist any feasible design x such that fi(x) ≤ fi(x) for
every objective function fi with i ∈ {1, ...,k} and f j(x) <
f j(x) for at least one j ∈ {1, ...,k}. The image of the
Pareto optimal set in objective space is denoted as the
Pareto optimal front. We distinguish between scalarization
approaches and direct approaches for multi-objective
optimization. In scalarization approaches, for example
constraint-based methods, the problem is transformed into
several single-objective optimization problems, that can
be solved efficiently using hybrid methods combining
gradient-based optimization methods and global search
methods.

Another significant step towards realistic
multi-objective design is to take into account uncertainties
for finding robust optimal solutions. Robust optimal
solutions are solutions, that are optimal and robust
with respect to perturbations. Most of the robustness
measures for multi-objective optimization are inspired by
single-objective robustness definitions based on statistical
quantities. We distinguish between expectation-based

and variance-based measures. Also, the quantities can
either be objectives or set as additional constraints.
Two expectation-based measures were for example
proposed by Deb and Gupta1 and adapted for aerodynamic
shape optimization.2 Furthermore, there exist methods
specifically tailored for multi-objective optimization
problems. The application to evolutionary multi-objective
optimization enables the use of a probability of dominance
or an expected fitness function.3 For a local sensitivity
analysis a local sensitivity region4 can be used in objective
space.

In Section 2 expected losses are introduced as
a measure for robustness when considering multiple
objectives and two different approaches to robust optimal
design are presented that both result in a multi-objective
optimization problem. The constraint method for solving
the multi-objective optimization problems is presented in
Section 3. The proposed strategy is applied for finding
robust optimal solutions in aerodynamic shape optimization
with aleatory uncertainties in Section 4.

2 Robust Design

2.1 Robustness Measures

In the following we introduce a measure for robustness, that
can be used in a scalarization approach, and account for
effects in objective space. The general idea is to measure
the expected distance of an outcome from the deterministic
Pareto optimal front. Using the Pareto optimal front we can
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Figure 1: Two different probability regions in objective
space

state if an outcome of random samples is better or worse
(corresponding to gains and losses in objective space).

Figure 1 shows the contours for a fixed probability, that
we will refer to as probability region, for two designs.
Both designs have a similar deterministic value (black dot).
Also, the variances and the expected value (circle) are
similar. Nevertheless, one would prefer the left design over
the right one since more outcomes are non-dominated by
outcomes for the right design. Additionally, the fact that
the gains outweigh the losses for the right design shows
that a robustness measure should be defined using a loss
function based on the distance to the deterministic value or
to the Pareto optimal front. Note that the points found in
the lower left region are definitely better and the points in
the upper right region definitely worse in comparison to the
deterministic outcome.

We propose two approaches to describe robustness with
the help of losses in objective space. In both approaches
the expected losses are constrained by a prescribed upper
bound.

2.2 Two-Phase Approach

In the two-phase approach we assume that a given
set of Pareto optimal points has been determined for
the deterministic optimization problem in a first phase.
Additionally we assume to have an approximation of the
Pareto optimal front in objective space, e.g. by means of
splines in the two-dimensional case or by the help of other
sophisticated interpolation methods for higher dimension.
Note that the approximation can become non-trivial for
disconnected Pareto optimal fronts, although a distance to
the front can be defined. We denote the representation of
the Pareto optimal front as φ0.

The expected losses can be expressed by means of a
signed distance function δ , that can be defined by using a
level-set method with zero level set φ0. Given a vector of
random input variables z(ω) depending on the uncertainties
ω , the corresponding optimization problem to be solved in
the second step is

min
y,u

F(y,u, z̄) (1)

s.t. c(y,u, z̄) = 0,
Exp(max(0,δ (F(y,u,z(ω)),φ0))≤ δmax.

The variables y and u are the state and design variables that
fulfill the state equation c(y,u) = 0. The minimization of

Figure 2: Signed distance function for two-phase
approach (left), expected possible losses (middle), linear
approximation (right)

the objective function vector F with objective functions Fi
for i = 1, ...k has to be understood component-wise. The
evaluation at z̄ denotes the deterministic case where z is
not a random variable but the value prescribed when not
considering any uncertainties. For reasons of clarity we will
omit to include the dependency on y and u in the following
definitions.

2.3 Direct Approach

In the direct approach the deterministic Pareto optimal front
is not given. Instead, the local distance of the samples
to the current deterministic value for z̄ is used to describe
losses. When not considering only losses, this approach
is similar to the constrained expectation-based approach.1

Different assumptions for the local estimation of losses can
be made. When considering expected possible losses we
may formulate the optimization constraint as

k

∑
i=1

Exp(max(0,Fi(z(ω))−Fi(z̄)))≤ µ1. (2)

Another assumption is to approximate the losses based on
a local linear approximation of the Pareto optimal in the
current deterministic outcome. The local front can then
be represented as the zero level set of φ = ∑

k
i=1 Fi(z(ω))−

Fi(z̄). The corresponding optimization constraint is

Exp(max(0,
k

∑
i=1

Fi(z(ω))−Fi(z̄)))≤ µ2 (3)

Other expressions may be based on the expected definite
losses or a better local approximation of the front (for
example a convex representation for convex multi-objective
problems).

Note that for gradient-based optimization the problem
has to be transformed to make the constraint functions
continuously differentiable. This can be done by either
reformulating the problem with the help of additional
variables or by approximating the maximum function.

Figure 2 depicts the signed distance functions for the
different approaches. In the two-phase approach the signed
distance function is built using for example linear splines
for approximating the Pareto optimal front. The expected
possible losses and the linear approximation are always
obtained locally for the respective deterministic outcome.
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2.4 Uncertainty Quantification

There exist different methods to propagate uncertainties ω

in the model. We make use of a non-intrusive polynomial
chaos approach, which is also referred to as pseudo-spectral
approach. In this approach the stochastic objective function
is expanded in terms of polynomials Φi that are orthogonal
with respect to the probability density function of the input
random variables z(ω), such that

f (y,u,z(ω)) =
∞

∑
i=1

f̂i(y,u)Φi(z(ω)), (4)

with f̂i(y,u) = γ
−1
i Exp( f (y,u,z(ω))Φi(z(ω)) and

Exp(ΦiΦ j) = γiδi j.
When applied to find statistical quantities the infinite

expansion is truncated. The Fourier coefficients are
approximated by first using stochastic collocation with
quadrature points and then employing a quadrature rule that
is suitable for the used polynomials.

3 Multi-Objective Optimization

3.1 Constraint-Based Approach

The formulation of robust Pareto optimal solutions results
in a multi-objective optimization problem. We solve it by
using the ε-constraint method.5 The concept of this method
is to optimize one objective function fs j while imposing
inequality constraints on the remaining competing objective
functions. For the robust multi-objective optimization the
constraint function is a statistical quantity. The constraints
f ( j)
i as well as the objective function fs j , that is to be

optimized, are varied in the steps of the algorithm to
find different Pareto optimal solutions that are evenly
distributed. The resulting minimization problem for the j-th
step of the algorithm applied to a general multi-objective
PDE-constrained optimization problem is

min
y,u

fs j(y,u)

s.t. c(y,u) = 0, (5)

fi(y,u)≤ f ( j)
i ∀ i ∈ {1, ...,k} : i 6= s j.

The inequality constraints for the different steps are
distributed equidistantly. The outlines of the front can be
found by minimizing the objective functions individually
without imposing additional constraints. It can be shown
that all unique solutions to the resulting single-objective
optimization problem (5) are globally Pareto optimal for
any upper bound f ( j)

i .6

3.2 Global Optimization Method

The correct choice of the algorithm for solving the
single-objective optimization problems (5) that result from
the ε-constraint method is very important. In Kusch et
al.7 a hybrid algorithm is proposed for the single-objective
optimization problems to enhance the chance of finding
a global optimum and thus Pareto optimal points. The

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.5

1

1.5

2

2.5
·10−2

lift coefficient

dr
ag

co
effi

ci
en
t

opt
exp(opt)
robust

exp(robust)

Figure 3: Pareto optimal front for two-phase approach
(robust) and deterministic Pareto optimal front (opt)

hybrid method combines the advantages of evolutionary
and gradient-based methods. In a first step a genetic
algorithm is applied on a Kriging surrogate model to avoid
computationally expensive calculations. We make use of
the software RoDeO,8 that is adjusted to handle the given
optimization constraints. The initial data acquisition is done
using Latin Hypercube sampling. The Kriging model is
trained in each optimization step using adaptive sampling
based on the expected improvement method. Furthermore,
several designs in the direction of steepest descent are
included in the training set. In the second step of the hybrid
algorithm a gradient-based optimization method is applied
for the full model. The design found in the first step is
used as a starting point for gradient-based optimization.
The gradients are obtained using a discrete adjoint method
based on algorithmic differentiation. The use of accurate
derivative from algorithmic differentiation is especially
useful for solving constrained optimization problems.

4 Aerodynamic Shape Optimization

We apply the proposed method to an aerodynamic shape
optimization problem for a 2D airfoil with a NACA0012
as initial design. The objective is to minimize the drag
coefficient and maximize the lift coefficient. Additional
inequality constraints are prescribed for the thickness of
the airfoil and the resulting moment. The flow is transonic
and inviscid with a Mach number of 0.8 and an angle of
attack of 1.25. We assume an uncertain Mach Number, that
is normally distributed Ma ∼ N(0.8,0.01). The associated
orthogonal polynomials for non-intrusive polynomial chaos
are Hermite polynomials. The airfoil is parametrized with
the help of 38 Hicks-Henne functions. The underlying
steady Euler equations are solved with the open-source
software SU29 using a Jameson-Schmidt-Turkel scheme.
Gradients for the optimization in SU2 are provided by
algorithmic differentiation.10

The two-phase approach was used with a prescribed
constraint on the distance δmax < 0.1 in normalized
objective space. Figure 3 shows the optimization
result in objective function space. The dots indicate
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Figure 4: Sampled probability region for expected losses
(robust) and the expectation-based approach (rob_exp)

the robust optimal designs evaluated for the Mach
number z̄ = 0.8, that is used in the deterministic
optimization. The crosses indicate the expected value.
For reasons of comparison the deterministic values and the
expected values of the multi-objective optimization without
considering uncertainties are shown by the grey-coloured
dots and crosses. The corresponding designs are plotted
on the right of the figure. The upper design corresponds
to the maximum lift coefficient and the lower design to
the mimimum drag coefficient. It can be observed that the
designs are very similar, while the expected values for the
robust design approach are significantly improved.

In figure 4 random samples are shown for a chosen
design to depict the probability region. The grey-coloured
region is the probability region for a comparable design
that was obtained using an expectation-based approach2

with the aim to optimize the expected value of drag and
lift coefficient. The probability regions differ significantly
as the result obtained by the expectation-based approach
leads to higher losses in objective space. In particular, the
probability region based on the expected losses is close to
the deterministic Pareto optimal front.

5 Summary and Outlook

We have presented a new measure for robustness when
considering multiple objectives. Two approaches to include
expected losses in a robust design formulation are given.
A constraint-based multi-objective optimization approach
making use of a hybrid method is suggested for solving
the robust design problem. The approach is applied for
the robust design of an airfoil. The results show that the
proposed method successfully finds robust designs with less
losses in objective space compared to expectation-based
approaches.

For the conference we intend to apply the suggested
method to a different shape optimization problem.
Furthermore, we will show results for the presented direct
approach for robust design with multiple objectives. In
the future the aim is to include objective functions from
different disciplines.
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