The climatic butterfly effect Do numerical simulations capture the statistics of chaotic systems?

Qiqi Wang Associate Professor Aeronautics and Astronautics Massachusetts Institute of Technology

Butterfly effect

Sea Level Pressure Difference between perturbed simulations

Can a butterfly cause a tornado? control the climate?

Feb 2020 10-minute precipitation

Annual precipitation 1961-1990

Climate: statistics of **weather** over a long time

What if a **butterfly** can **control** the climate?

Can tiny numerical error completely alter turbulence statistics?

chaotic aerodynamic simulation

NO

- Ergodicity
- Shadowing

YES

- Ergodicity not applicable
- Shadowing nonphysical
- Evidence in model system

NO

- Ergodicity
- Shadowing

YES

- Ergodicity not applicable
- Shadowing nonphysical
- Evidence in model system

 $\langle J \rangle \coloneqq \lim_{T \to \infty} \left(\frac{1}{T} \int_0^T J(u(t)) dt \right)$

For a solution starting from almost any initial condition, the <u>time average</u> of a function of the solution equals the ensemble average

NO

- Ergodicity
- Shadowing

YES

Ergodicity not applicable

- Shadowing nonphysical
- Evidence in model system

Ergodicity not applicable

Different initial condition, same statistics Climate unchanged by a **one-time** perturbation

Can tiny but **persistent** perturbation significantly modify the statistics?

$$\frac{du}{dt} = f(u) + \delta f(u)$$

NO

- Ergodicity
- Shadowing

YES

- Ergodicity not applicable
- Shadowing nonphysical
- Evidence in model system

Shadowing Lemma

 $\forall \epsilon > 0, \exists \delta, s.t.$ $\forall v(t) \text{ s.t.}$ $\frac{dv}{dt} = f(v) + \delta f$ $\|\delta f\| < \delta$ $\exists u(t) \text{ s.t.}$ $\frac{du}{dt} = f(u)$ $\|u - v\| < \epsilon$

Pilyugin SY. Shadowing in dynamical systems 1999

Starting from same initial condition

Shadowing solutions

No, because of shadowing:

$$\frac{dv}{dt} = f(v) + \frac{\delta f(v)}{\delta f(v)}$$

Small perturbation $\delta f(v)$ means a shadowing solution exists:

$$\frac{du}{dt} = f(u)$$

with $||u - v|| < \epsilon$. The statistics of v (perturbed solution) and u (unperturbed) are therefore close.

NO

- Ergodicity
- Shadowing

YES

- Ergodicity not applicable
- Shadowing nonphysical
- Evidence in model system

No, because of shadowing:

$$\frac{dv}{dt} = f(v) + \frac{\delta f(v)}{\delta f(v)}$$

Small perturbation $\delta f(v)$ means a shadowing solution exists:

$$\frac{du}{dt} = f(u)$$

with $||u - v|| < \epsilon$. The statistics of v (perturbed solution) and u (unperturbed) are therefore close.

 $\langle J \rangle \coloneqq \lim_{T \to \infty} \left(\frac{1}{T} \int_0^T J(u(t)) dt \right)$

For a solution starting from **a most** any initial condition, the time average of a function of the solution equals the ensemble average

Nonphysical solutions

Starting from an unlikely (measure-zero) set of initial conditions, time average differs from ensemble average

- **1.** Periodic solutions
- 2. Quasi-physical solutions

1. Periodic nonphysical solutions

1. Periodic nonphysical solutions

1. Periodic nonphysical solutions

Simplified the Lorenz map: tent map

Tent map: Periodic nonphysical solutions

2 $x_{i+1} = \varphi(x_i) = \begin{cases} 2x_i, & x_i < 1\\ 2(2 - x_i), x_i \ge 1 \end{cases}$ Represent $x_i = \sum_{k=1}^{\infty} \frac{x_i^{(k)}}{2^k}$ 1 $\overline{k=0}$ Then, $x_{i+1}^{(k)} = x_i^0 x_i^{k+1}$ Sauer. Computer arithmetic and sensitivity of natural measure. 2005

Tent map: Periodic nonphysical shadowing solutions

1.0

0.6

$$x_i = \sum_{k=0}^{\infty} \frac{x_i^{(k)}}{2^k}$$

- Physical solution: $x_i^{(k)}$ i.i.d
- Periodic: $x_i^{(k)}$ determined by previous digits 0.4
- Quasi-physical: $x_i^{(k)}$ depends on previous digits 0.2

50.01% probability of
^{0.8} repeating the previous digit

0.0 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

1.0

$$x_i = \sum_{k=0}^{\infty} \frac{x_i^{(k)}}{2^k}$$

- Physical solution: $x_i^{(k)}$ i.i.d
- Periodic: x_i^(k) determined by previous digits
- Quasi-physical: $x_i^{(k)}$ depends on previous digits 0.2

^{0.8} 51% probability of repeating the previous digit

$$x_i = \sum_{k=0}^{\infty} \frac{x_i^{(k)}}{2^k}$$

- Physical solution: $x_i^{(k)}$ i.i.d
- Periodic: x_i^(k) determined by previous digits
- Quasi-physical: $x_i^{(k)}$ depends on previous digits 0.2

NO

- Ergodicity
- Shadowing

YES

- Ergodicity not applicable
- Shadowing nonphysical
- Evidence in model system

NO

- Ergodicity
- Shadowing

YES

- Ergodicity not applicable
- Shadowing nonphysical
- Evidence in model system

Can a **butterfly control the climate**? Evidence in model systems – large perturbation

Can a **butterfly control the climate**? Evidence in model systems – smaller perturbation

Can a **butterfly control the climate**? Evidence in model systems – even smaller perturbation

What if a **butterfly** can **control** the climate?

Can tiny numerical error completely alter turbulence statistics?

chaotic aerodynamic simulation